翻訳と辞書 |
Intended interpretation : ウィキペディア英語版 | Interpretation (logic)
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a function that provides the extension of symbols and strings of symbols of an object language. For example, an interpretation function could take the predicate ''T'' (for "tall") and assign it the extension (for "Abraham Lincoln"). Note that all our interpretation does is assign the extension to the non-logical constant ''T'', and does not make a claim about whether ''T'' is to stand for tall and 'a' for Abraham Lincoln. Nor does logical interpretation have anything to say about logical connectives like 'and', 'or' and 'not'. Though ''we'' may take these symbols to stand for certain things or concepts, this is not determined by the interpretation function. An interpretation often (but not always) provides a way to determine the truth values of sentences in a language. If a given interpretation assigns the value True to a sentence or theory, the interpretation is called a model of that sentence or theory. == Formal languages == (詳細はformulas'', depending on the context) composed from a fixed set of ''letters'' or ''symbols''. The inventory from which these letters are taken is called the ''alphabet'' over which the language is defined. To distinguish the strings of symbols that are in a formal language from arbitrary strings of symbols, the former are sometimes called ''well-formed formulæ'' (wff). The essential feature of a formal language is that its syntax can be defined without reference to interpretation. For example, we can determine that (''P'' or ''Q'') is a well-formed formula even without knowing whether it is true or false.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Interpretation (logic)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|